Outward stabilization of the voltage sensor in domain II but not domain I speeds inactivation of voltage-gated sodium channels.
نویسندگان
چکیده
To determine the roles of the individual S4 segments in domains I and II to activation and inactivation kinetics of sodium current (INa) in NaV1.5, we used a tethered biotin and avidin approach after a site-directed cysteine substitution was made in the second outermost Arg in each S4 (DI-R2C and DII-R2C). We first determined the fraction of gating charge contributed by the individual S4's to maximal gating current (Qmax), and found that the outermost Arg residue in each S4 contributed ∼19% to Qmax with minimal contributions by other arginines. Stabilization of the S4's in DI-R2C and DII-R2C was confirmed by measuring the expected reduction in Qmax. In DI-R2C, stabilization resulted in a decrease in peak INa of ∼45%, while its peak current-voltage (I-V) and voltage-dependent Na channel availability (SSI) curves were nearly unchanged from wild type (WT). In contrast, stabilization of the DII-R2C enhanced activation with a negative shift in the peak I-V relationship by -7 mV and a larger -17 mV shift in the voltage-dependent SSI curve. Furthermore, its INa decay time constants and time-to-peak INa became more rapid than WT. An explanation for these results is that the depolarized conformation of DII-S4, but not DI-S4, affects the receptor for the inactivation particle formed by the interdomain linker between DIII and IV. In addition, the leftward shifts of both activation and inactivation and the decrease in Gmax after stabilization of the DII-S4 support previous studies that showed β-scorpion toxins trap the voltage sensor of DII in an activated conformation.
منابع مشابه
Domain IV voltage-sensor movement is both sufficient and rate limiting for fast inactivation in sodium channels
Voltage-gated sodium channels are critical for the generation and propagation of electrical signals in most excitable cells. Activation of Na(+) channels initiates an action potential, and fast inactivation facilitates repolarization of the membrane by the outward K(+) current. Fast inactivation is also the main determinant of the refractory period between successive electrical impulses. Althou...
متن کاملInhibition of sodium channel gating by trapping the domain II voltage sensor with protoxin II.
ProTx-II, an inhibitory cysteine knot toxin from the tarantula Thrixopelma pruriens, inhibits voltage-gated sodium channels. Using the cut-open oocyte preparation for electrophysiological recording, we show here that ProTx-II impedes movement of the gating charges of the sodium channel voltage sensors and reduces maximum activation of sodium conductance. At a concentration of 1 microM, the toxi...
متن کاملThe tarantula toxins ProTx-II and huwentoxin-IV differentially interact with human Nav1.7 voltage sensors to inhibit channel activation and inactivation.
The voltage-gated sodium channel Na(v)1.7 plays a crucial role in pain, and drugs that inhibit hNa(v)1.7 may have tremendous therapeutic potential. ProTx-II and huwentoxin-IV (HWTX-IV), cystine knot peptides from tarantula venoms, preferentially block hNa(v)1.7. Understanding the interactions of these toxins with sodium channels could aid the development of novel pain therapeutics. Whereas both...
متن کاملDirect Evidence that Scorpion α-Toxins (Site-3) Modulate Sodium Channel Inactivation by Hindrance of Voltage-Sensor Movements
The position of the voltage-sensing transmembrane segment, S4, in voltage-gated ion channels as a function of voltage remains incompletely elucidated. Site-3 toxins bind primarily to the extracellular loops connecting transmembrane helical segments S1-S2 and S3-S4 in Domain 4 (D4) and S5-S6 in Domain 1 (D1) and slow fast-inactivation of voltage-gated sodium channels. As S4 of the human skeletal...
متن کاملVoltage Sensor–Trapping Enhanced Activation of Sodium Channels by β-Scorpion Toxin Bound to the S3–S4 Loop in Domain II
Polypeptide neurotoxins alter ion channel gating by binding to extracellular receptor sites, even though the voltage sensors are in their S4 transmembrane segments. By analysis of sodium channel chimeras, a beta-scorpion toxin is shown here to negatively shift voltage dependence of activation and enhance closed state inactivation by binding to a receptor site that requires glycine 845 (Gly-845)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 305 8 شماره
صفحات -
تاریخ انتشار 2013